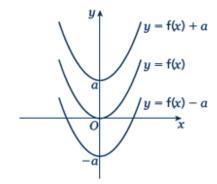


Translating graphs

A LEVEL LINKS

Scheme of work: 1f. Transformations – transforming graphs – f(x) notation

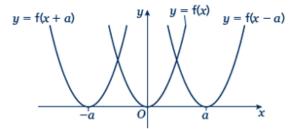

Key points

• The transformation $y = f(x) \pm a$ is a translation of y = f(x) parallel to the *y*-axis; it is a vertical translation.

As shown on the graph,

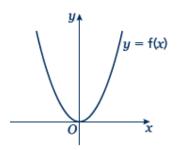
o
$$y = f(x) + a$$
 translates $y = f(x)$ up

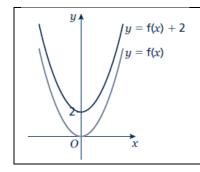
$$y = f(x) - a$$
 translates $y = f(x)$ down.



• The transformation $y = f(x \pm a)$ is a translation of y = f(x) parallel to the *x*-axis; it is a horizontal translation.

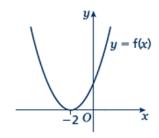
As shown on the graph,

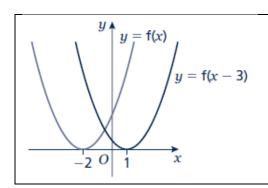

o
$$y = f(x + a)$$
 translates $y = f(x)$ to the left


o
$$y = f(x - a)$$
 translates $y = f(x)$ to the right.

Examples

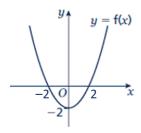
Example 1 The graph shows the function y = f(x). Sketch the graph of y = f(x) + 2.

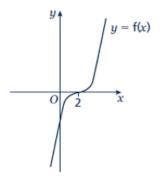

For the function y = f(x) + 2 translate the function y = f(x) 2 units up.



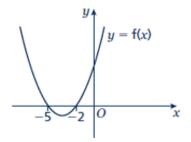
Example 2 The graph shows the function y = f(x).

Sketch the graph of y = f(x - 3).

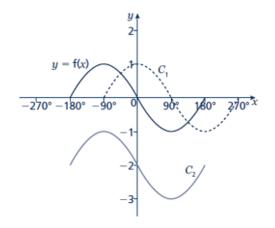


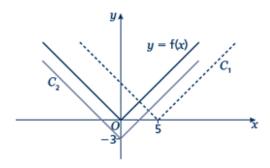

For the function y = f(x - 3) translate the function y = f(x) 3 units right.

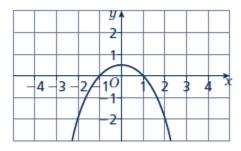
Practice


The graph shows the function y = f(x). Copy the graph and on the same axes sketch and label the graphs of y = f(x) + 4 and y = f(x + 2).

The graph shows the function y = f(x). Copy the graph and on the same axes sketch and label the graphs of y = f(x + 3) and y = f(x) - 3.


The graph shows the function y = f(x). Copy the graph and on the same axes sketch the graph of y = f(x - 5).

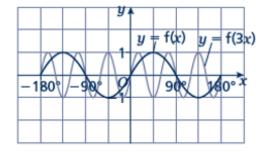



4 The graph shows the function y = f(x) and two transformations of y = f(x), labelled C_1 and C_2 . Write down the equations of the translated curves C_1 and C_2 in function form.

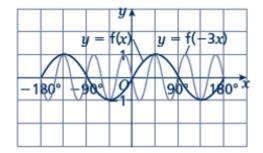
5 The graph shows the function y = f(x) and two transformations of y = f(x), labelled C_1 and C_2 . Write down the equations of the translated curves C_1 and C_2 in function form.

- 6 The graph shows the function y = f(x).
 - a Sketch the graph of y = f(x) + 2
 - **b** Sketch the graph of y = f(x + 2)

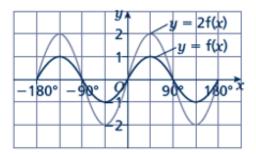
Stretching graphs

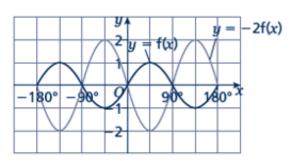

A LEVEL LINKS

Scheme of work: 1f. Transformations – transforming graphs – f(x) notation


Textbook: Pure Year 1, 4.6 Stretching graphs

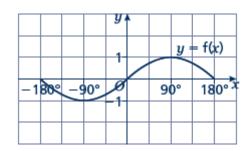
Key points

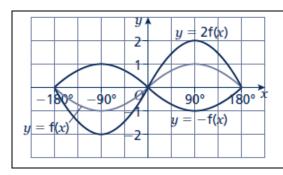

• The transformation y = f(ax) is a horizontal stretch of y = f(x) with scale factor $\frac{1}{a}$ parallel to the *x*-axis.


• The transformation y = f(-ax) is a horizontal stretch of y = f(x) with scale factor $\frac{1}{a}$ parallel to the *x*-axis and then a reflection in the *y*-axis.

• The transformation y = af(x) is a vertical stretch of y = f(x) with scale factor a parallel to the y-axis.

• The transformation y = -af(x) is a vertical stretch of y = f(x) with scale factor a parallel to the y-axis and then a reflection in the x-axis.

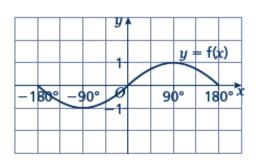


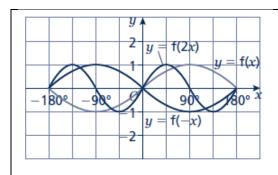


Examples

Example 3 The graph shows the function y = f(x).

Sketch and label the graphs of y = 2f(x) and y = -f(x).



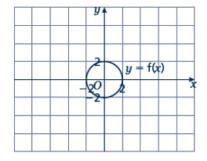

The function y = 2f(x) is a vertical stretch of y = f(x) with scale factor 2 parallel to the *y*-axis.

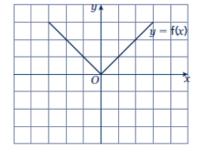
The function y = -f(x) is a reflection of y = f(x) in the *x*-axis.

Example 4 The graph shows the function y = f(x).

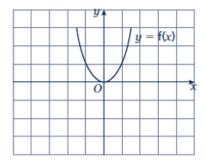
Sketch and label the graphs of y = f(2x) and y = f(-x).

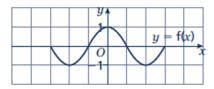
The function y = f(2x) is a horizontal stretch of y = f(x) with scale factor $\frac{1}{2}$ parallel to the *x*-axis.

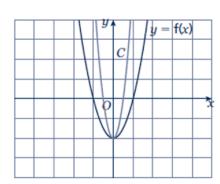

The function y = f(-x) is a reflection of y = f(x) in the y-axis.



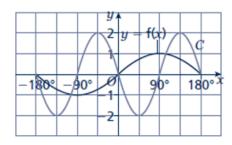
Practice

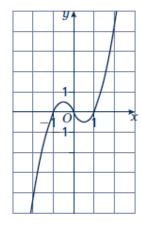

- 7 The graph shows the function y = f(x).
 - a Copy the graph and on the same axes sketch and label the graph of y = 3f(x).
 - Make another copy of the graph and on the same axes sketch and label the graph of y = f(2x).


8 The graph shows the function y = f(x). Copy the graph and on the same axes sketch and label the graphs of y = -2f(x) and y = f(3x).


The graph shows the function y = f(x). Copy the graph and, on the same axes, sketch and label the graphs of y = -f(x) and $y = f(\frac{1}{2}x)$.

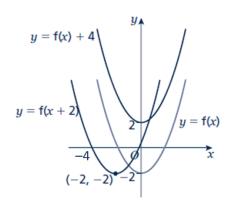
10 The graph shows the function y = f(x). Copy the graph and, on the same axes, sketch the graph of y = -f(2x).


The graph shows the function y = f(x) and a transformation, labelled C.Write down the equation of the translated curve C in function form.

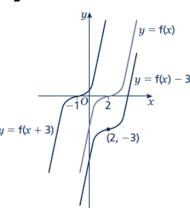


The graph shows the function y = f(x) and a transformation labelled C.Write down the equation of the translated curve C in function form.

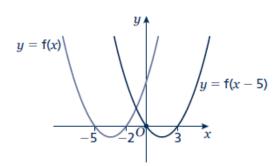
- 13 The graph shows the function y = f(x).
 - **a** Sketch the graph of y = -f(x).
 - **b** Sketch the graph of y = 2f(x).


Extend

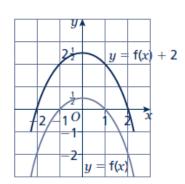
- **14** a Sketch and label the graph of y = f(x), where f(x) = (x 1)(x + 1).
 - **b** On the same axes, sketch and label the graphs of y = f(x) 2 and y = f(x + 2).
- 15 a Sketch and label the graph of y = f(x), where f(x) = -(x+1)(x-2).
 - **b** On the same axes, sketch and label the graph of $y = f(-\frac{1}{2}x)$.

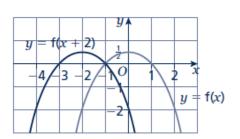


Answers


1

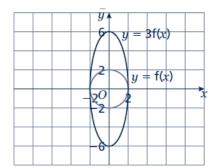
2

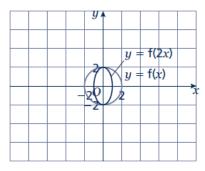

3


4
$$C_1$$
: $y = f(x - 90^\circ)$
 C_2 : $y = f(x) - 2$

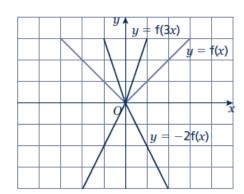
5
$$C_1$$
: $y = f(x - 5)$
 C_2 : $y = f(x) - 3$

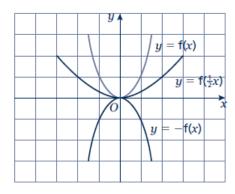
6 a

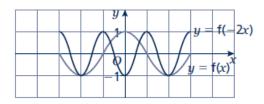

b



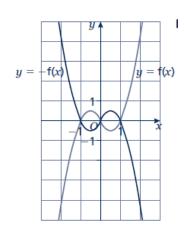
edexcel

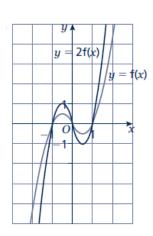

7 a


b


8

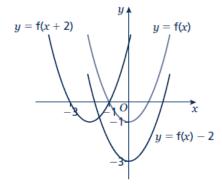
9

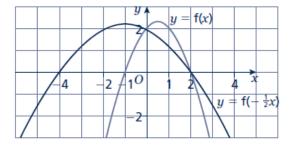

10


11
$$y = f(2x)$$

12
$$y = -2f(2x)$$
 or $y = 2f(-2x)$

13 a




b

